
Detectors for Relative and Absolute Dosimetry

Ionization Chambers and Diode Detectors

Detectors for Relative and Absolute Dosimetry

IBA Dosimetry offers a full range of ionization chambers and pSi semiconductor detectors for various 2D and 3D water phantom systems. All detectors are from our in-house production and have been extensively tested to meet the highest criteria in radiotherapy dosimetry.

Air Ionization Chambers

Compact Chambers

Applications:

All compact chambers are designed for measurements with high reproducibility in air, in solid or in water phantoms. They are suitable for relative dosimetry of photon, electron and proton fields in radiotherapy.

CC01 and CC04

CC01 and CC04 are the conventional ionization chambers for measurements of small fields and of ranges with high dose gradients, e.g. stereotactic fields.

CC08

CC08 is used for customized applications during manufacturing and installation of linear accelerators (e.g. "Buddelship").

CC13

CC13 is the standard chamber for clinical use in water phantoms and for output factor measurements.

CC08 / CC13

CC25

CC25 is mainly used for quality assurance in air and for low dose measurements in water phantoms.

CC25

CC13-S

The CC13-S is replacement for RK chamber used in RFA phantoms. Parameters of the CC13-S are similar to CC13.

CC13-S

Features					
	Waterproof	Vented through waterproof sleeve	Fully guarded	High uniform spatial resolution	Used for radial and axial beam incidence
CC01					
CC04					
CC08					
CC13					
CC25					
CC13-S					100

Farmer Type Chambers

Applications:

All farmer type chambers are designed for measurements with high reproducibility in air, in solid or in water phantoms. They are suitable for absolute dosimetry of photon, electron and proton beams in radiotherapy.

FC65-G

FC65-G is the standard reference detector for reference dosimetry and scientific applications.

FC65-G

FC65-P

FC23-C

FC65-P

FC65-P can be used for all routine applications.

FC23-C

FC23-C yields higher precision in measuring of isodose contours.

Features						
	Waterproof	Vented through waterproof sleeve	Fully guarded	Wall material	Robust plastic construction for daily beam check	Higher spatial resolution
FC65-G				Graphite		
FC65-P				POM		
FC23-C				C552		

Plane Parallel Chambers

Applications:

All plane parallel chambers are designed for measurements with high reproducibility in air, in solid or in water phantoms.

PPC05 and PPC40

PPC05 and PPC40 are suitable for absolute dosimetry of electron, photon and proton beams in radiotherapy.

PPC05

PPC40

NACP

The NACP is designed according to recommendations of the Nordic Association of Clinical Physicists (NACP), Acta Radiologica Oncology 19,55. The chamber is used for absolute dosimetry of electron beams 2-50 MeV. A thinner front wall minimizes contamination of the beam and allows measurements at shallow depth and high accuracy even at low electron energies is guaranteed.

NACP

Features	•					
	Waterproof	Vented through waterproof sleeve	Fully guarded	Higher spatial resolution (depth dose)	Superior physics characteristics: - stabilization time after polarity change approx. 30 s - polarity effect < 1% for all usable energies, field sizes and depths at linear accelerators	Low polarity efect
PPC05						
PPC40					 Control of the control of the control	
NACP						

Diode Detectors

Applications:

The IBA Dosimetry diode detectors are designed for depth dose and profile measurements in water and in air and for output factor measurements in small photon beams.

The diode detectors from IBA Dosimetry are an excellent choice in relative field analysis as well as output factor measurements. They are based on the 3rd generation of *p*Si semiconductors. The high doped *p*-type silicon detector chips, specifically designed for radiation therapy applications, have since their introduction in 1992 been the natural choice for measurements where high spatial resolution is required. The accuracy and lifetime of the diode detectors is unsurpassed in the field of radiation therapy today.

Features						
	Waterproof	Proven dose rate and energy independence	High uniform spatial resolution in the beam plane and precise definition of the measurement depth (accurately shaped penumbras in the whole beam plane using the same detector orientation)	Direct electron depth dose, no need for ionization to dose conversion	Independent of bias, pressure and moisture, very robust – always reliable, no "warm-up" time	High durability: 3 year warranty – low lifetime costs
PFD³ ^G Photon	•		•		•	
EFD ^{3G} Electron	•	•	•	•	•	•
RFD ^{3G} Reference	•	•	•		•	•
SFD Stereotactic	•		•	•		•

Technical specifications

Compact Chambers								
	Cavity volume (cm³)	Cavity length (mm)	Cavity radius (mm)	Wall material	Wall thickness (g/cm²)	Central electrode material	Water-proof	
CC01	0.01	3.6	1.0	C552	0.088	Steel	Υ	
CC04	0.04	3.6	2.0	C552	0.070	C552	Υ	
CC08	0.08	4.0	3.0	C552	0.070	C552	Υ	
CC13	0.13	5.8	3.0	C552	0.070	C552	Υ	
CC25	0.25	10.0	3.0	C552	0.070	C552	Υ	
CC13-S	0.13	5.8	3.0	PEEK/C552	0.154	C552	Υ	

Farmer Type Chambers

	Cavity volume (cm³)	Cavity length (mm)	Cavity radius (mm)	Wall material	Wall thickness (g/cm²)	Central electrode material	Water-proof
FC65-G	0.65	23.1	3.1	Graphite	0.073	Aluminium	Υ
FC65-P	0.65	23.1	3.1	POM ¹	0.057	Aluminium	Υ
FC23-C	0.23	8.8	3.1	C552	0.070	C552	Υ

Various build-up caps for compact chambers and farmer type chambers in PMMA or other materials on request. Farmer type chambers: For Cobalt energies the protection cap can be used as build-up caps.

Plane Parallel Chambers

	Materials	Window thickness (mg/cm ⁻²)/(mm)	Active volume (cm³)	Electrode spacing (mm)	Collecting electrode diameter (mm)	Guard ring width (mm)	Water-proof
PPC05	Window and body C552; graphited (PEEK) electrode	176 / 1	0.05	0.5	10	3.5	Υ
PPC40	PMMA	118 / 1	0.40	2.0	16	4.0	Υ
NACP	Mylar foile and graphite window; body PMMA; electrode graphited	104 / 0.6	0.16	2.0	10	3.0	Y

 $^{^{\}mbox{\scriptsize 1}}$ Poly Oxy Methylene (CH $_{\mbox{\scriptsize 2}}$ 0). A trade name is Delrin.

Diode Detectors

	Effective measurement point	Chip size (side/thickness)	Geometric form of active area	Diameter of active area	Thickness of active volume
PFD ^{3G} Photon	< 0.9 mm	2.5 / 0.5 mm	circled	2 mm	0.06 mm
EFD ^{3G} Electron	< 0.9 mm	2.5 / 0.5 mm	circled	2 mm	0.06 mm
RFD ^{3G} Reference	n. a.	2.5 / 0.5 mm	circled	2 mm	0.06 mm
SFD Stereotactic	< 0.9 mm	0.95 / 0.5 mm	circled	0.6 mm	0.06 mm

Technical data is subject to change without prior notice.

IBA Activities in a Nutshell

IBA delivers solutions of unprecedented precision with a focus in the fields of cancer diagnosis and therapy.

Diagnostics Portfolio -

Safer Imaging, Earlier Cancer Detection

- Advanced quality assurance devices for Medical Imaging: Solutions for x-ray diagnosis and patient-dose monitoring
- Unique expertise in the design of cyclotrons:
 Solutions for radiopharmaceutical tracers incl. production
 and distribution

Radiation Therapy Portfolio – Fighting Cancer

- Undisputed leader in Particle Therapy: enabling the most precise and effective radiation therapy
- Industry leading QA and dosimetry solutions: maximizing efficiency, minimizing errors, better outcomes
- Imaging fiducial markers:Visicoil enabling high precision tumor targeting

Sterilization & Ionization -

Improving Hygiene and Safety of Everyday Life

Electron accelerators and high power X-Ray solutions: applied in many industries to sterilize medical devices, to cold pasteurize food products or to improve polymer properties

IBA a Belgian company, is listed on the paneuropean stock exchange EURONEXT and its Annual Reports can be downloaded on the Website: www.iba-group.com.

Contact details:

info@iba-dosimetry.com

Europe, Middle East, Africa

IBA Dosimetry GmbH Bahnhofstr. 5

90592 Schwarzenbruck, Germany

Tel.: +49 9128 607 0 Fax: +49 9128 607 10

North America. Latin America

IBA Dosimetry America 3150 Stage Post Drive, Suite 110 Bartlett, TN 38133, USA

Tel.: +1 901 386 2242 Fax: +1 901 382 9453

Asia Pacific

IBA Dosimetry Asia Pacific No.6, Xing Guang Er Jie Beijing OPTO-mechatronics Industrial Park (OIP), Tongzhou District Beijing 101111, China

Tel.: +86 10 8080 9288 Fax: +86 10 8080 9299

